home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Chip 2007 January, February, March & April
/
Chip-Cover-CD-2007-02.iso
/
Pakiet multimedia
/
Muzyka
/
Edytory sampli (probek dzwieku)
/
ZynAddSubFX_2.2.0
/
Setup_ZynAddSubFX-2.2.0.exe
/
source code
/
Synth
/
OscilGen.C
< prev
next >
Wrap
C/C++ Source or Header
|
2005-03-25
|
33KB
|
1,174 lines
/*
ZynAddSubFX - a software synthesizer
OscilGen.C - Waveform generator for ADnote
Copyright (C) 2002-2005 Nasca Octavian Paul
Author: Nasca Octavian Paul
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License
as published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License (version 2) for more details.
You should have received a copy of the GNU General Public License (version 2)
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include "OscilGen.h"
#include "../Effects/Distorsion.h"
REALTYPE *OscilGen::tmpsmps;//this array stores some termporary data and it has SOUND_BUFFER_SIZE elements
FFTFREQS OscilGen::outoscilFFTfreqs;
OscilGen::OscilGen(FFTwrapper *fft_,Resonance *res_):Presets(){
setpresettype("Poscilgen");
fft=fft_;
res=res_;
newFFTFREQS(&oscilFFTfreqs,OSCIL_SIZE/2);
newFFTFREQS(&basefuncFFTfreqs,OSCIL_SIZE/2);
randseed=1;
ADvsPAD=false;
defaults();
};
OscilGen::~OscilGen(){
deleteFFTFREQS(&basefuncFFTfreqs);
deleteFFTFREQS(&oscilFFTfreqs);
};
void OscilGen::defaults(){
oldbasefunc=0;oldbasepar=64;oldhmagtype=0;oldwaveshapingfunction=0;oldwaveshaping=64;
oldbasefuncmodulation=0;oldharmonicshift=0;oldbasefuncmodulationpar1=0;oldbasefuncmodulationpar2=0;oldbasefuncmodulationpar3=0;
oldmodulation=0;oldmodulationpar1=0;oldmodulationpar2=0;oldmodulationpar3=0;
for (int i=0;i<MAX_AD_HARMONICS;i++){
hmag[i]=0.0;
hphase[i]=0.0;
Phmag[i]=64;
Phphase[i]=64;
};
Phmag[0]=127;
Phmagtype=0;
if (ADvsPAD) Prand=127;//max phase randomness (usefull if the oscil will be imported to a ADsynth from a PADsynth
else Prand=64;//no randomness
Pcurrentbasefunc=0;
Pbasefuncpar=64;
Pbasefuncmodulation=0;
Pbasefuncmodulationpar1=64;
Pbasefuncmodulationpar2=64;
Pbasefuncmodulationpar3=32;
Pmodulation=0;
Pmodulationpar1=64;
Pmodulationpar2=64;
Pmodulationpar3=32;
Pwaveshapingfunction=0;
Pwaveshaping=64;
Pfiltertype=0;
Pfilterpar1=64;
Pfilterpar2=64;
Pfilterbeforews=0;
Psatype=0;
Psapar=64;
Pamprandpower=64;
Pamprandtype=0;
Pharmonicshift=0;
Pharmonicshiftfirst=0;
Padaptiveharmonics=0;
Padaptiveharmonicspower=100;
Padaptiveharmonicsbasefreq=128;
Padaptiveharmonicspar=50;
for (int i=0;i<OSCIL_SIZE/2;i++) {
oscilFFTfreqs.s[i]=0.0;
oscilFFTfreqs.c[i]=0.0;
basefuncFFTfreqs.s[i]=0.0;
basefuncFFTfreqs.c[i]=0.0;
};
oscilprepared=0;
oldfilterpars=0;oldsapars=0;
prepare();
};
void OscilGen::convert2sine(int magtype){
REALTYPE mag[MAX_AD_HARMONICS],phase[MAX_AD_HARMONICS];
REALTYPE oscil[OSCIL_SIZE];
FFTFREQS freqs;
newFFTFREQS(&freqs,OSCIL_SIZE/2);
get(oscil,-1.0);
FFTwrapper *fft=new FFTwrapper(OSCIL_SIZE);
fft->smps2freqs(oscil,freqs);
delete(fft);
REALTYPE max=0.0;
mag[0]=0;
phase[0]=0;
for (int i=0;i<MAX_AD_HARMONICS;i++){
mag[i]=sqrt(pow(freqs.s[i+1],2)+pow(freqs.c[i+1],2.0));
phase[i]=atan2(freqs.c[i+1],freqs.s[i+1]);
if (max<mag[i]) max=mag[i];
};
if (max<0.00001) max=1.0;
defaults();
for (int i=0;i<MAX_AD_HARMONICS-1;i++){
REALTYPE newmag=mag[i]/max;
REALTYPE newphase=phase[i];
Phmag[i]=(int) ((newmag)*64.0)+64;
Phphase[i]=64-(int) (64.0*newphase/PI);
if (Phphase[i]>127) Phphase[i]=127;
if (Phmag[i]==64) Phphase[i]=64;
};
deleteFFTFREQS(&freqs);
prepare();
};
/*
* Base Functions - START
*/
REALTYPE OscilGen::basefunc_pulse(REALTYPE x,REALTYPE a){
return((fmod(x,1.0)<a)?-1.0:1.0);
};
REALTYPE OscilGen::basefunc_saw(REALTYPE x,REALTYPE a){
if (a<0.00001) a=0.00001;
else if (a>0.99999) a=0.99999;
x=fmod(x,1);
if (x<a) return(x/a*2.0-1.0);
else return((1.0-x)/(1.0-a)*2.0-1.0);
};
REALTYPE OscilGen::basefunc_triangle(REALTYPE x,REALTYPE a){
x=fmod(x+0.25,1);
a=1-a;
if (a<0.00001) a=0.00001;
if (x<0.5) x=x*4-1.0;
else x=(1.0-x)*4-1.0;
x/=-a;
if (x<-1.0) x=-1.0;
if (x>1.0) x=1.0;
return(x);
};
REALTYPE OscilGen::basefunc_power(REALTYPE x,REALTYPE a){
x=fmod(x,1);
if (a<0.00001) a=0.00001;
else if (a>0.99999) a=0.99999;
return(pow(x,exp((a-0.5)*10.0))*2.0-1.0);
};
REALTYPE OscilGen::basefunc_gauss(REALTYPE x,REALTYPE a){
x=fmod(x,1)*2.0-1.0;
if (a<0.00001) a=0.00001;
return(exp(-x*x*(exp(a*8)+5.0))*2.0-1.0);
};
REALTYPE OscilGen::basefunc_diode(REALTYPE x,REALTYPE a){
if (a<0.00001) a=0.00001;
else if (a>0.99999) a=0.99999;
a=a*2.0-1.0;
x=cos((x+0.5)*2.0*PI)-a;
if (x<0.0) x=0.0;
return(x/(1.0-a)*2-1.0);
};
REALTYPE OscilGen::basefunc_abssine(REALTYPE x,REALTYPE a){
x=fmod(x,1);
if (a<0.00001) a=0.00001;
else if (a>0.99999) a=0.99999;
return(sin(pow(x,exp((a-0.5)*5.0))*PI)*2.0-1.0);
};
REALTYPE OscilGen::basefunc_pulsesine(REALTYPE x,REALTYPE a){
if (a<0.00001) a=0.00001;
x=(fmod(x,1)-0.5)*exp((a-0.5)*log(128));
if (x<-0.5) x=-0.5;
else if (x>0.5) x=0.5;
x=sin(x*PI*2.0);
return(x);
};
REALTYPE OscilGen::basefunc_stretchsine(REALTYPE x,REALTYPE a){
x=fmod(x+0.5,1)*2.0-1.0;
a=(a-0.5)*4;if (a>0.0) a*=2;
a=pow(3.0,a);
REALTYPE b=pow(fabs(x),a);
if (x<0) b=-b;
return(-sin(b*PI));
};
REALTYPE OscilGen::basefunc_chirp(REALTYPE x,REALTYPE a){
x=fmod(x,1.0)*2.0*PI;
a=(a-0.5)*4;if (a<0.0) a*=2.0;
a=pow(3.0,a);
return(sin(x/2.0)*sin(a*x*x));
};
REALTYPE OscilGen::basefunc_absstretchsine(REALTYPE x,REALTYPE a){
x=fmod(x+0.5,1)*2.0-1.0;
a=(a-0.5)*9;
a=pow(3.0,a);
REALTYPE b=pow(fabs(x),a);
if (x<0) b=-b;
return(-pow(sin(b*PI),2));
};
REALTYPE OscilGen::basefunc_chebyshev(REALTYPE x,REALTYPE a){
a=a*a*a*30.0+1.0;
return(cos(acos(x*2.0-1.0)*a));
};
REALTYPE OscilGen::basefunc_sqr(REALTYPE x,REALTYPE a){
a=a*a*a*a*160.0+0.001;
return(-atan(sin(x*2.0*PI)*a));
};
/*
* Base Functions - END
*/
/*
* Get the base function
*/
void OscilGen::getbasefunction(REALTYPE *smps){
int i;
REALTYPE par=(Pbasefuncpar+0.5)/128.0;
if (Pbasefuncpar==64) par=0.5;
REALTYPE basefuncmodulationpar1=Pbasefuncmodulationpar1/127.0,
basefuncmodulationpar2=Pbasefuncmodulationpar2/127.0,
basefuncmodulationpar3=Pbasefuncmodulationpar3/127.0;
switch(Pbasefuncmodulation){
case 1:basefuncmodulationpar1=(pow(2,basefuncmodulationpar1*5.0)-1.0)/10.0;
basefuncmodulationpar3=floor((pow(2,basefuncmodulationpar3*5.0)-1.0));
if (basefuncmodulationpar3<0.9999) basefuncmodulationpar3=-1.0;
break;
case 2:basefuncmodulationpar1=(pow(2,basefuncmodulationpar1*5.0)-1.0)/10.0;
basefuncmodulationpar3=1.0+floor((pow(2,basefuncmodulationpar3*5.0)-1.0));
break;
case 3:basefuncmodulationpar1=(pow(2,basefuncmodulationpar1*7.0)-1.0)/10.0;
basefuncmodulationpar3=0.01+(pow(2,basefuncmodulationpar3*16.0)-1.0)/10.0;
break;
};
// printf("%.5f %.5f\n",basefuncmodulationpar1,basefuncmodulationpar3);
for (i=0;i<OSCIL_SIZE;i++) {
REALTYPE t=i*1.0/OSCIL_SIZE;
switch(Pbasefuncmodulation){
case 1:t=t*basefuncmodulationpar3+sin((t+basefuncmodulationpar2)*2.0*PI)*basefuncmodulationpar1;//rev
break;
case 2:t=t+sin((t*basefuncmodulationpar3+basefuncmodulationpar2)*2.0*PI)*basefuncmodulationpar1;//sine
break;
case 3:t=t+pow((1.0-cos((t+basefuncmodulationpar2)*2.0*PI))*0.5,basefuncmodulationpar3)*basefuncmodulationpar1;//power
break;
};
t=t-floor(t);
switch (Pcurrentbasefunc){
case 1:smps[i]=basefunc_triangle(t,par);
break;
case 2:smps[i]=basefunc_pulse(t,par);
break;
case 3:smps[i]=basefunc_saw(t,par);
break;
case 4:smps[i]=basefunc_power(t,par);
break;
case 5:smps[i]=basefunc_gauss(t,par);
break;
case 6:smps[i]=basefunc_diode(t,par);
break;
case 7:smps[i]=basefunc_abssine(t,par);
break;
case 8:smps[i]=basefunc_pulsesine(t,par);
break;
case 9:smps[i]=basefunc_stretchsine(t,par);
break;
case 10:smps[i]=basefunc_chirp(t,par);
break;
case 11:smps[i]=basefunc_absstretchsine(t,par);
break;
case 12:smps[i]=basefunc_chebyshev(t,par);
break;
case 13:smps[i]=basefunc_sqr(t,par);
break;
default:smps[i]=-sin(2.0*PI*i/OSCIL_SIZE);
};
};
};
/*
* Filter the oscillator
*/
void OscilGen::oscilfilter(){
if (Pfiltertype==0) return;
REALTYPE par=1.0-Pfilterpar1/128.0;
REALTYPE par2=Pfilterpar2/127.0;
REALTYPE max=0.0,tmp=0.0,p2,x;
for (int i=1;i<OSCIL_SIZE/2;i++){
REALTYPE gain=1.0;
switch(Pfiltertype){
case 1: gain=pow(1.0-par*par*par*0.99,i);//lp
tmp=par2*par2*par2*par2*0.5+0.0001;
if (gain<tmp) gain=pow(gain,10.0)/pow(tmp,9.0);
break;
case 2: gain=1.0-pow(1.0-par*par,i+1);//hp1
gain=pow(gain,par2*2.0+0.1);
break;
case 3: if (par<0.2) par=par*0.25+0.15;
gain=1.0-pow(1.0-par*par*0.999+0.001,i*0.05*i+1.0);//hp1b
tmp=pow(5.0,par2*2.0);
gain=pow(gain,tmp);
break;
case 4: gain=i+1-pow(2,(1.0-par)*7.5);//bp1
gain=1.0/(1.0+gain*gain/(i+1.0));
tmp=pow(5.0,par2*2.0);
gain=pow(gain,tmp);
if (gain<1e-5) gain=1e-5;
break;
case 5: gain=i+1-pow(2,(1.0-par)*7.5);//bs1
gain=pow(atan(gain/(i/10.0+1))/1.57,6);
gain=pow(gain,par2*par2*3.9+0.1);
break;
case 6: tmp=pow(par2,0.33);
gain=(i+1>pow(2,(1.0-par)*10)?0.0:1.0)*par2+(1.0-par2);//lp2
break;
case 7: tmp=pow(par2,0.33);
//tmp=1.0-(1.0-par2)*(1.0-par2);
gain=(i+1>pow(2,(1.0-par)*7)?1.0:0.0)*par2+(1.0-par2);//hp2
if (Pfilterpar1==0) gain=1.0;
break;
case 8: tmp=pow(par2,0.33);
//tmp=1.0-(1.0-par2)*(1.0-par2);
gain=(fabs(pow(2,(1.0-par)*7)-i)>i/2+1?0.0:1.0)*par2+(1.0-par2);//bp2
break;
case 9: tmp=pow(par2,0.33);
gain=(fabs(pow(2,(1.0-par)*7)-i)<i/2+1?0.0:1.0)*par2+(1.0-par2);//bs2
break;
case 10:tmp=pow(5.0,par2*2.0-1.0);
tmp=pow(i/32.0,tmp)*32.0;
if (Pfilterpar2==64) tmp=i;
gain=cos(par*par*PI/2.0*tmp);//cos
gain*=gain;
break;
case 11:tmp=pow(5.0,par2*2.0-1.0);
tmp=pow(i/32.0,tmp)*32.0;
if (Pfilterpar2==64) tmp=i;
gain=sin(par*par*PI/2.0*tmp);//sin
gain*=gain;
break;
case 12:p2=1.0-par+0.2;
x=i/(64.0*p2*p2);
if (x<0.0) x=0.0;
else if (x>1.0) x=1.0;
tmp=pow(1.0-par2,2.0);
gain=cos(x*PI)*(1.0-tmp)+1.01+tmp;//low shelf
break;
case 13:tmp=(int) (pow(2.0,(1.0-par)*7.2));
gain=1.0;
if (i==(int) (tmp)) gain=pow(2.0,par2*par2*8.0);
break;
};
oscilFFTfreqs.s[i]*=gain;
oscilFFTfreqs.c[i]*=gain;
REALTYPE tmp=oscilFFTfreqs.s[i]*oscilFFTfreqs.s[i]+
oscilFFTfreqs.c[i]*oscilFFTfreqs.c[i];
if (max<tmp) max=tmp;
};
max=sqrt(max);
if (max<1e-10) max=1.0;
REALTYPE imax=1.0/max;
for (int i=1;i<OSCIL_SIZE/2;i++) {
oscilFFTfreqs.s[i]*=imax;
oscilFFTfreqs.c[i]*=imax;
};
};
/*
* Change the base function
*/
void OscilGen::changebasefunction(){
if (Pcurrentbasefunc!=0) {
getbasefunction(tmpsmps);
fft->smps2freqs(tmpsmps,basefuncFFTfreqs);
basefuncFFTfreqs.c[0]=0.0;
} else {
for (int i=0;i<OSCIL_SIZE/2;i++){
basefuncFFTfreqs.s[i]=0.0;
basefuncFFTfreqs.c[i]=0.0;
};
//in this case basefuncFFTfreqs_ are not used
}
oscilprepared=0;
oldbasefunc=Pcurrentbasefunc;
oldbasepar=Pbasefuncpar;
oldbasefuncmodulation=Pbasefuncmodulation;
oldbasefuncmodulationpar1=Pbasefuncmodulationpar1;
oldbasefuncmodulationpar2=Pbasefuncmodulationpar2;
oldbasefuncmodulationpar3=Pbasefuncmodulationpar3;
};
/*
* Waveshape
*/
void OscilGen::waveshape(){
int i;
oldwaveshapingfunction=Pwaveshapingfunction;
oldwaveshaping=Pwaveshaping;
if (Pwaveshapingfunction==0) return;
oscilFFTfreqs.c[0]=0.0;//remove the DC
//reduce the amplitude of the freqs near the nyquist
for (i=1;i<OSCIL_SIZE/8;i++) {
REALTYPE tmp=i/(OSCIL_SIZE/8.0);
oscilFFTfreqs.s[OSCIL_SIZE/2-i]*=tmp;
oscilFFTfreqs.c[OSCIL_SIZE/2-i]*=tmp;
};
fft->freqs2smps(oscilFFTfreqs,tmpsmps);
//Normalize
REALTYPE max=0.0;
for (i=0;i<OSCIL_SIZE;i++)
if (max<fabs(tmpsmps[i])) max=fabs(tmpsmps[i]);
if (max<0.00001) max=1.0;
max=1.0/max;for (i=0;i<OSCIL_SIZE;i++) tmpsmps[i]*=max;
//Do the waveshaping
waveshapesmps(OSCIL_SIZE,tmpsmps,Pwaveshapingfunction,Pwaveshaping);
fft->smps2freqs(tmpsmps,oscilFFTfreqs);//perform FFT
};
/*
* Do the Frequency Modulation of the Oscil
*/
void OscilGen::modulation(){
int i;
oldmodulation=Pmodulation;
oldmodulationpar1=Pmodulationpar1;
oldmodulationpar2=Pmodulationpar2;
oldmodulationpar3=Pmodulationpar3;
if (Pmodulation==0) return;
REALTYPE modulationpar1=Pmodulationpar1/127.0,
modulationpar2=0.5-Pmodulationpar2/127.0,
modulationpar3=Pmodulationpar3/127.0;
switch(Pmodulation){
case 1:modulationpar1=(pow(2,modulationpar1*7.0)-1.0)/100.0;
modulationpar3=floor((pow(2,modulationpar3*5.0)-1.0));
if (modulationpar3<0.9999) modulationpar3=-1.0;
break;
case 2:modulationpar1=(pow(2,modulationpar1*7.0)-1.0)/100.0;
modulationpar3=1.0+floor((pow(2,modulationpar3*5.0)-1.0));
break;
case 3:modulationpar1=(pow(2,modulationpar1*9.0)-1.0)/100.0;
modulationpar3=0.01+(pow(2,modulationpar3*16.0)-1.0)/10.0;
break;
};
oscilFFTfreqs.c[0]=0.0;//remove the DC
//reduce the amplitude of the freqs near the nyquist
for (i=1;i<OSCIL_SIZE/8;i++) {
REALTYPE tmp=i/(OSCIL_SIZE/8.0);
oscilFFTfreqs.s[OSCIL_SIZE/2-i]*=tmp;
oscilFFTfreqs.c[OSCIL_SIZE/2-i]*=tmp;
};
fft->freqs2smps(oscilFFTfreqs,tmpsmps);
int extra_points=2;
REALTYPE *in=new REALTYPE[OSCIL_SIZE+extra_points];
//Normalize
REALTYPE max=0.0;
for (i=0;i<OSCIL_SIZE;i++) if (max<fabs(tmpsmps[i])) max=fabs(tmpsmps[i]);
if (max<0.00001) max=1.0;
max=1.0/max;for (i=0;i<OSCIL_SIZE;i++) in[i]=tmpsmps[i]*max;
for (i=0;i<extra_points;i++) in[i+OSCIL_SIZE]=tmpsmps[i]*max;
//Do the modulation
for (i=0;i<OSCIL_SIZE;i++) {
REALTYPE t=i*1.0/OSCIL_SIZE;
switch(Pmodulation){
case 1:t=t*modulationpar3+sin((t+modulationpar2)*2.0*PI)*modulationpar1;//rev
break;
case 2:t=t+sin((t*modulationpar3+modulationpar2)*2.0*PI)*modulationpar1;//sine
break;
case 3:t=t+pow((1.0-cos((t+modulationpar2)*2.0*PI))*0.5,modulationpar3)*modulationpar1;//power
break;
};
t=(t-floor(t))*OSCIL_SIZE;
int poshi=(int) t;
REALTYPE poslo=t-floor(t);
tmpsmps[i]=in[poshi]*(1.0-poslo)+in[poshi+1]*poslo;
};
delete(in);
fft->smps2freqs(tmpsmps,oscilFFTfreqs);//perform FFT
};
/*
* Adjust the spectrum
*/
void OscilGen::spectrumadjust(){
if (Psatype==0) return;
REALTYPE par=Psapar/127.0;
switch(Psatype){
case 1: par=1.0-par*2.0;
if (par>=0.0) par=pow(5.0,par);
else par=pow(8.0,par);
break;
case 2: par=pow(10.0,(1.0-par)*3.0)*0.25;
break;
case 3: par=pow(10.0,(1.0-par)*3.0)*0.25;
break;
};
REALTYPE max=0.0;
for (int i=0;i<OSCIL_SIZE/2;i++){
REALTYPE tmp=pow(oscilFFTfreqs.c[i],2)+pow(oscilFFTfreqs.s[i],2.0);
if (max<tmp) max=tmp;
};
max=sqrt(max)/OSCIL_SIZE*2.0;
if (max<1e-8) max=1.0;
for (int i=0;i<OSCIL_SIZE/2;i++){
REALTYPE mag=sqrt(pow(oscilFFTfreqs.s[i],2)+pow(oscilFFTfreqs.c[i],2.0))/max;
REALTYPE phase=atan2(oscilFFTfreqs.s[i],oscilFFTfreqs.c[i]);
switch (Psatype){
case 1: mag=pow(mag,par);
break;
case 2: if (mag<par) mag=0.0;
break;
case 3: mag/=par;
if (mag>1.0) mag=1.0;
break;
};
oscilFFTfreqs.c[i]=mag*cos(phase);
oscilFFTfreqs.s[i]=mag*sin(phase);
};
};
void OscilGen::shiftharmonics(){
if (Pharmonicshift==0) return;
REALTYPE hc,hs;
int harmonicshift=-Pharmonicshift;
if (harmonicshift>0){
for (int i=OSCIL_SIZE/2-2;i>=0;i--){
int oldh=i-harmonicshift;
if (oldh<0){
hc=0.0;
hs=0.0;
} else {
hc=oscilFFTfreqs.c[oldh+1];
hs=oscilFFTfreqs.s[oldh+1];
};
oscilFFTfreqs.c[i+1]=hc;
oscilFFTfreqs.s[i+1]=hs;
};
} else {
for (int i=0;i<OSCIL_SIZE/2-1;i++){
int oldh=i+abs(harmonicshift);
if (oldh>=(OSCIL_SIZE/2-1)){
hc=0.0;
hs=0.0;
} else {
hc=oscilFFTfreqs.c[oldh+1];
hs=oscilFFTfreqs.s[oldh+1];
if (fabs(hc)<0.000001) hc=0.0;
if (fabs(hs)<0.000001) hs=0.0;
};
oscilFFTfreqs.c[i+1]=hc;
oscilFFTfreqs.s[i+1]=hs;
};
};
oscilFFTfreqs.c[0]=0.0;
};
/*
* Prepare the Oscillator
*/
void OscilGen::prepare(){
int i,j,k;
REALTYPE a,b,c,d,hmagnew;
if ((oldbasepar!=Pbasefuncpar)||(oldbasefunc!=Pcurrentbasefunc)||
(oldbasefuncmodulation!=Pbasefuncmodulation)||
(oldbasefuncmodulationpar1!=Pbasefuncmodulationpar1)||
(oldbasefuncmodulationpar2!=Pbasefuncmodulationpar2)||
(oldbasefuncmodulationpar3!=Pbasefuncmodulationpar3))
changebasefunction();
for (i=0;i<MAX_AD_HARMONICS;i++) hphase[i]=(Phphase[i]-64.0)/64.0*PI/(i+1);
for (i=0;i<MAX_AD_HARMONICS;i++){
hmagnew=1.0-fabs(Phmag[i]/64.0-1.0);
switch(Phmagtype){
case 1:hmag[i]=exp(hmagnew*log(0.01)); break;
case 2:hmag[i]=exp(hmagnew*log(0.001));break;
case 3:hmag[i]=exp(hmagnew*log(0.0001));break;
case 4:hmag[i]=exp(hmagnew*log(0.00001));break;
default:hmag[i]=1.0-hmagnew;
break;
};
if (Phmag[i]<64) hmag[i]=-hmag[i];
};
//remove the harmonics where Phmag[i]==64
for (i=0;i<MAX_AD_HARMONICS;i++) if (Phmag[i]==64) hmag[i]=0.0;
for (i=0;i<OSCIL_SIZE/2;i++) {
oscilFFTfreqs.c[i]=0.0;
oscilFFTfreqs.s[i]=0.0;
};
if (Pcurrentbasefunc==0) {//the sine case
for (i=0;i<MAX_AD_HARMONICS;i++){
oscilFFTfreqs.c[i+1]=-hmag[i]*sin(hphase[i]*(i+1))/2.0;
oscilFFTfreqs.s[i+1]=hmag[i]*cos(hphase[i]*(i+1))/2.0;
};
} else {
for (j=0;j<MAX_AD_HARMONICS;j++){
if (Phmag[j]==64) continue;
for (i=1;i<OSCIL_SIZE/2;i++){
k=i*(j+1);if (k>=OSCIL_SIZE/2) break;
a=basefuncFFTfreqs.c[i];
b=basefuncFFTfreqs.s[i];
c=hmag[j]*cos(hphase[j]*k);
d=hmag[j]*sin(hphase[j]*k);
oscilFFTfreqs.c[k]+=a*c-b*d;
oscilFFTfreqs.s[k]+=a*d+b*c;
};
};
};
if (Pharmonicshiftfirst!=0) shiftharmonics();
if (Pfilterbeforews==0){
waveshape();
oscilfilter();
} else {
oscilfilter();
waveshape();
};
modulation();
spectrumadjust();
if (Pharmonicshiftfirst==0) shiftharmonics();
oscilFFTfreqs.c[0]=0.0;
oldhmagtype=Phmagtype;
oldharmonicshift=Pharmonicshift+Pharmonicshiftfirst*256;
oscilprepared=1;
};
void OscilGen::adaptiveharmonic(FFTFREQS f,REALTYPE freq){
if ((Padaptiveharmonics==0)||(freq<1.0)) return;
FFTFREQS inf;
newFFTFREQS(&inf,OSCIL_SIZE/2);
for (int i=0;i<OSCIL_SIZE/2;i++) {
inf.s[i]=f.s[i];
inf.c[i]=f.c[i];
f.s[i]=0.0;
f.c[i]=0.0;
};
inf.c[0]=0.0;inf.s[0]=0.0;
REALTYPE hc=0.0,hs=0.0;
REALTYPE basefreq=30.0*pow(10.0,Padaptiveharmonicsbasefreq/128.0);
REALTYPE power=(Padaptiveharmonicspower+1.0)/101.0;
REALTYPE rap=freq/basefreq;
rap=pow(rap,power);
bool down=false;
if (rap>1.0) {
rap=1.0/rap;
down=true;
};
for (int i=0;i<OSCIL_SIZE/2-2;i++){
REALTYPE h=i*rap;
int high=(int)(i*rap);
REALTYPE low=fmod(h,1.0);
if (high>=(OSCIL_SIZE/2-2)){
break;
} else {
if (down){
f.c[high]+=inf.c[i]*(1.0-low);
f.s[high]+=inf.s[i]*(1.0-low);
f.c[high+1]+=inf.c[i]*low;
f.s[high+1]+=inf.s[i]*low;
} else {
hc=inf.c[high]*(1.0-low)+inf.c[high+1]*low;
hs=inf.s[high]*(1.0-low)+inf.s[high+1]*low;
};
if (fabs(hc)<0.000001) hc=0.0;
if (fabs(hs)<0.000001) hs=0.0;
};
if (!down){
if (i==0) {//corect the aplitude of the first harmonic
hc*=rap;
hs*=rap;
};
f.c[i]=hc;
f.s[i]=hs;
};
};
f.c[1]+=f.c[0];f.s[1]+=f.s[0];
f.c[0]=0.0;f.s[0]=0.0;
deleteFFTFREQS(&inf);
};
void OscilGen::adaptiveharmonicpostprocess(REALTYPE *f,int size){
if (Padaptiveharmonics<=1) return;
REALTYPE *inf=new REALTYPE[size];
REALTYPE par=Padaptiveharmonicspar*0.01;
par=1.0-pow((1.0-par),1.5);
for (int i=0;i<size;i++) {
inf[i]=f[i]*par;
f[i]=f[i]*(1.0-par);
};
if (Padaptiveharmonics==2){//2n+1
for (int i=0;i<size;i++) if ((i%2)==0) f[i]+=inf[i];//i=0 pt prima armonica,etc.
} else{//celelalte moduri
int nh=(Padaptiveharmonics-3)/2+2;
int sub_vs_add=(Padaptiveharmonics-3)%2;
if (sub_vs_add==0){
for (int i=0;i<size;i++) {
if (((i+1)%nh)==0){
f[i]+=inf[i];
};
};
} else {
for (int i=0;i<size/nh-1;i++) {
f[(i+1)*nh-1]+=inf[i];
};
};
};
delete(inf);
};
/*
* Get the oscillator function
*/
short int OscilGen::get(REALTYPE *smps,REALTYPE freqHz){
return(this->get(smps,freqHz,0));
};
void OscilGen::newrandseed(unsigned int randseed){
this->randseed=randseed;
};
/*
* Get the oscillator function
*/
short int OscilGen::get(REALTYPE *smps,REALTYPE freqHz,int resonance){
int i;
int nyquist,outpos;
if ((oldbasepar!=Pbasefuncpar)||(oldbasefunc!=Pcurrentbasefunc)||(oldhmagtype!=Phmagtype)
||(oldwaveshaping!=Pwaveshaping)||(oldwaveshapingfunction!=Pwaveshapingfunction)) oscilprepared=0;
if (oldfilterpars!=Pfiltertype*256+Pfilterpar1+Pfilterpar2*65536+Pfilterbeforews*16777216){
oscilprepared=0;
oldfilterpars=Pfiltertype*256+Pfilterpar1+Pfilterpar2*65536+Pfilterbeforews*16777216;
};
if (oldsapars!=Psatype*256+Psapar){
oscilprepared=0;
oldsapars=Psatype*256+Psapar;
};
if ((oldbasefuncmodulation!=Pbasefuncmodulation)||
(oldbasefuncmodulationpar1!=Pbasefuncmodulationpar1)||
(oldbasefuncmodulationpar2!=Pbasefuncmodulationpar2)||
(oldbasefuncmodulationpar3!=Pbasefuncmodulationpar3))
oscilprepared=0;
if ((oldmodulation!=Pmodulation)||
(oldmodulationpar1!=Pmodulationpar1)||
(oldmodulationpar2!=Pmodulationpar2)||
(oldmodulationpar3!=Pmodulationpar3))
oscilprepared=0;
if (oldharmonicshift!=Pharmonicshift+Pharmonicshiftfirst*256) oscilprepared=0;
if (oscilprepared!=1) prepare();
outpos=(int)((RND*2.0-1.0)*(REALTYPE) OSCIL_SIZE*(Prand-64.0)/64.0);
outpos=(outpos+2*OSCIL_SIZE) % OSCIL_SIZE;
for (i=0;i<OSCIL_SIZE/2;i++){
outoscilFFTfreqs.c[i]=0.0;
outoscilFFTfreqs.s[i]=0.0;
};
nyquist=(int)(0.5*SAMPLE_RATE/fabs(freqHz))+2;
if (ADvsPAD) nyquist=(int)(OSCIL_SIZE/2);
if (nyquist>OSCIL_SIZE/2) nyquist=OSCIL_SIZE/2;
int realnyquist=nyquist;
if (Padaptiveharmonics!=0) nyquist=OSCIL_SIZE/2;
for (i=1;i<nyquist-1;i++) {
outoscilFFTfreqs.c[i]=oscilFFTfreqs.c[i];
outoscilFFTfreqs.s[i]=oscilFFTfreqs.s[i];
};
adaptiveharmonic(outoscilFFTfreqs,freqHz);
adaptiveharmonicpostprocess(&outoscilFFTfreqs.c[1],OSCIL_SIZE/2-1);
adaptiveharmonicpostprocess(&outoscilFFTfreqs.s[1],OSCIL_SIZE/2-1);
nyquist=realnyquist;
if (Padaptiveharmonics){//do the antialiasing in the case of adaptive harmonics
for (i=nyquist;i<OSCIL_SIZE/2;i++) {
outoscilFFTfreqs.s[i]=0;
outoscilFFTfreqs.c[i]=0;
};
};
// Randomness (each harmonic), the block type is computed
// in ADnote by setting start position according to this setting
if ((Prand>64)&&(freqHz>=0.0)&&(!ADvsPAD)){
REALTYPE rnd,angle,a,b,c,d;
rnd=PI*pow((Prand-64.0)/64.0,2.0);
for (i=1;i<nyquist-1;i++){//to Nyquist only for AntiAliasing
angle=rnd*i*RND;
a=outoscilFFTfreqs.c[i];
b=outoscilFFTfreqs.s[i];
c=cos(angle);
d=sin(angle);
outoscilFFTfreqs.c[i]=a*c-b*d;
outoscilFFTfreqs.s[i]=a*d+b*c;
};
};
//Harmonic Amplitude Randomness
if ((freqHz>0.1)&&(!ADvsPAD)) {
unsigned int realrnd=rand();
srand(randseed);
REALTYPE power=Pamprandpower/127.0;
REALTYPE normalize=1.0/(1.2-power);
switch (Pamprandtype){
case 1: power=power*2.0-0.5;
power=pow(15.0,power);
for (i=1;i<nyquist-1;i++){
REALTYPE amp=pow(RND,power)*normalize;
outoscilFFTfreqs.c[i]*=amp;
outoscilFFTfreqs.s[i]*=amp;
};
break;
case 2: power=power*2.0-0.5;
power=pow(15.0,power)*2.0;
REALTYPE rndfreq=2*PI*RND;
for (i=1;i<nyquist-1;i++){
REALTYPE amp=pow(fabs(sin(i*rndfreq)),power)*normalize;
outoscilFFTfreqs.c[i]*=amp;
outoscilFFTfreqs.s[i]*=amp;
};
break;
};
srand(realrnd+1);
};
if ((freqHz>0.1)&&(resonance!=0)) res->applyres(nyquist-1,outoscilFFTfreqs,freqHz);
//Full RMS normalize
REALTYPE sum=0;
for (int j=1;j<OSCIL_SIZE/2;j++) {
REALTYPE term=outoscilFFTfreqs.c[j]*outoscilFFTfreqs.c[j]
+outoscilFFTfreqs.s[j]*outoscilFFTfreqs.s[j];
sum+=term;
};
if (sum<0.000001) sum=1.0;
sum=1.0/sqrt(sum);
for (int j=1;j<OSCIL_SIZE/2;j++) {
outoscilFFTfreqs.c[j]*=sum;
outoscilFFTfreqs.s[j]*=sum;
};
if ((ADvsPAD)&&(freqHz>0.1)){//in this case the smps will contain the freqs
for (i=1;i<OSCIL_SIZE/2;i++) smps[i-1]=sqrt(outoscilFFTfreqs.c[i]*outoscilFFTfreqs.c[i]
+outoscilFFTfreqs.s[i]*outoscilFFTfreqs.s[i]);
} else {
fft->freqs2smps(outoscilFFTfreqs,smps);
for (i=0;i<OSCIL_SIZE;i++) smps[i]*=0.25;//correct the amplitude
};
if (Prand<64) return(outpos);
else return(0);
};
/*
* Get the spectrum of the oscillator for the UI
*/
void OscilGen::getspectrum(int n, REALTYPE *spc,int what){
if (n>OSCIL_SIZE/2) n=OSCIL_SIZE/2;
for (int i=1;i<n;i++){
if (what==0){
spc[i-1]=sqrt(oscilFFTfreqs.c[i]*oscilFFTfreqs.c[i]
+oscilFFTfreqs.s[i]*oscilFFTfreqs.s[i]);
} else {
if (Pcurrentbasefunc==0) spc[i-1]=((i==1)?(1.0):(0.0));
else spc[i-1]=sqrt(basefuncFFTfreqs.c[i]*basefuncFFTfreqs.c[i]+
basefuncFFTfreqs.s[i]*basefuncFFTfreqs.s[i]);
};
};
if (what==0) adaptiveharmonicpostprocess(spc,n-1);
};
/*
* Convert the oscillator as base function
*/
void OscilGen::useasbase(){
int i;
for (i=0;i<OSCIL_SIZE/2;i++) {
basefuncFFTfreqs.c[i]=oscilFFTfreqs.c[i];
basefuncFFTfreqs.s[i]=oscilFFTfreqs.s[i];
};
oldbasefunc=Pcurrentbasefunc=127;
prepare();
};
/*
* Get the base function for UI
*/
void OscilGen::getcurrentbasefunction(REALTYPE *smps){
if (Pcurrentbasefunc!=0) {
fft->freqs2smps(basefuncFFTfreqs,smps);
} else getbasefunction(smps);//the sine case
};
void OscilGen::add2XML(XMLwrapper *xml){
xml->addpar("harmonic_mag_type",Phmagtype);
xml->addpar("base_function",Pcurrentbasefunc);
xml->addpar("base_function_par",Pbasefuncpar);
xml->addpar("base_function_modulation",Pbasefuncmodulation);
xml->addpar("base_function_modulation_par1",Pbasefuncmodulationpar1);
xml->addpar("base_function_modulation_par2",Pbasefuncmodulationpar2);
xml->addpar("base_function_modulation_par3",Pbasefuncmodulationpar3);
xml->addpar("modulation",Pmodulation);
xml->addpar("modulation_par1",Pmodulationpar1);
xml->addpar("modulation_par2",Pmodulationpar2);
xml->addpar("modulation_par3",Pmodulationpar3);
xml->addpar("wave_shaping",Pwaveshaping);
xml->addpar("wave_shaping_function",Pwaveshapingfunction);
xml->addpar("filter_type",Pfiltertype);
xml->addpar("filter_par1",Pfilterpar1);
xml->addpar("filter_par2",Pfilterpar2);
xml->addpar("filter_before_wave_shaping",Pfilterbeforews);
xml->addpar("spectrum_adjust_type",Psatype);
xml->addpar("spectrum_adjust_par",Psapar);
xml->addpar("rand",Prand);
xml->addpar("amp_rand_type",Pamprandtype);
xml->addpar("amp_rand_power",Pamprandpower);
xml->addpar("harmonic_shift",Pharmonicshift);
xml->addparbool("harmonic_shift_first",Pharmonicshiftfirst);
xml->addpar("adaptive_harmonics",Padaptiveharmonics);
xml->addpar("adaptive_harmonics_base_frequency",Padaptiveharmonicsbasefreq);
xml->addpar("adaptive_harmonics_power",Padaptiveharmonicspower);
xml->beginbranch("HARMONICS");
for (int n=0;n<MAX_AD_HARMONICS;n++){
if ((Phmag[n]==64)&&(Phphase[n]==64)) continue;
xml->beginbranch("HARMONIC",n+1);
xml->addpar("mag",Phmag[n]);
xml->addpar("phase",Phphase[n]);
xml->endbranch();
};
xml->endbranch();
if (Pcurrentbasefunc==127){
REALTYPE max=0.0;
for (int i=0;i<OSCIL_SIZE/2;i++){
if (max<fabs(basefuncFFTfreqs.c[i])) max=fabs(basefuncFFTfreqs.c[i]);
if (max<fabs(basefuncFFTfreqs.s[i])) max=fabs(basefuncFFTfreqs.s[i]);
};
if (max<0.00000001) max=1.0;
xml->beginbranch("BASE_FUNCTION");
for (int i=1;i<OSCIL_SIZE/2;i++){
REALTYPE xc=basefuncFFTfreqs.c[i]/max;
REALTYPE xs=basefuncFFTfreqs.s[i]/max;
if ((fabs(xs)>0.00001)&&(fabs(xs)>0.00001)){
xml->beginbranch("BF_HARMONIC",i);
xml->addparreal("cos",xc);
xml->addparreal("sin",xs);
xml->endbranch();
};
};
xml->endbranch();
};
};
void OscilGen::getfromXML(XMLwrapper *xml){
Phmagtype=xml->getpar127("harmonic_mag_type",Phmagtype);
Pcurrentbasefunc=xml->getpar127("base_function",Pcurrentbasefunc);
Pbasefuncpar=xml->getpar127("base_function_par",Pbasefuncpar);
Pbasefuncmodulation=xml->getpar127("base_function_modulation",Pbasefuncmodulation);
Pbasefuncmodulationpar1=xml->getpar127("base_function_modulation_par1",Pbasefuncmodulationpar1);
Pbasefuncmodulationpar2=xml->getpar127("base_function_modulation_par2",Pbasefuncmodulationpar2);
Pbasefuncmodulationpar3=xml->getpar127("base_function_modulation_par3",Pbasefuncmodulationpar3);
Pmodulation=xml->getpar127("modulation",Pmodulation);
Pmodulationpar1=xml->getpar127("modulation_par1",Pmodulationpar1);
Pmodulationpar2=xml->getpar127("modulation_par2",Pmodulationpar2);
Pmodulationpar3=xml->getpar127("modulation_par3",Pmodulationpar3);
Pwaveshaping=xml->getpar127("wave_shaping",Pwaveshaping);
Pwaveshapingfunction=xml->getpar127("wave_shaping_function",Pwaveshapingfunction);
Pfiltertype=xml->getpar127("filter_type",Pfiltertype);
Pfilterpar1=xml->getpar127("filter_par1",Pfilterpar1);
Pfilterpar2=xml->getpar127("filter_par2",Pfilterpar2);
Pfilterbeforews=xml->getpar127("filter_before_wave_shaping",Pfilterbeforews);
Psatype=xml->getpar127("spectrum_adjust_type",Psatype);
Psapar=xml->getpar127("spectrum_adjust_par",Psapar);
Prand=xml->getpar127("rand",Prand);
Pamprandtype=xml->getpar127("amp_rand_type",Pamprandtype);
Pamprandpower=xml->getpar127("amp_rand_power",Pamprandpower);
Pharmonicshift=xml->getpar("harmonic_shift",Pharmonicshift,-64,64);
Pharmonicshiftfirst=xml->getparbool("harmonic_shift_first",Pharmonicshiftfirst);
Padaptiveharmonics=xml->getpar("adaptive_harmonics",Padaptiveharmonics,0,127);
Padaptiveharmonicsbasefreq=xml->getpar("adaptive_harmonics_base_frequency",Padaptiveharmonicsbasefreq,0,255);
Padaptiveharmonicspower=xml->getpar("adaptive_harmonics_power",Padaptiveharmonicspower,0,200);
if (xml->enterbranch("HARMONICS")){
Phmag[0]=64;Phphase[0]=64;
for (int n=0;n<MAX_AD_HARMONICS;n++){
if (xml->enterbranch("HARMONIC",n+1)==0) continue;
Phmag[n]=xml->getpar127("mag",64);
Phphase[n]=xml->getpar127("phase",64);
xml->exitbranch();
};
xml->exitbranch();
};
if (Pcurrentbasefunc!=0) changebasefunction();
if (xml->enterbranch("BASE_FUNCTION")){
for (int i=1;i<OSCIL_SIZE/2;i++){
if (xml->enterbranch("BF_HARMONIC",i)){
basefuncFFTfreqs.c[i]=xml->getparreal("cos",0.0);
basefuncFFTfreqs.s[i]=xml->getparreal("sin",0.0);
xml->exitbranch();
};
};
xml->exitbranch();
REALTYPE max=0.0;
basefuncFFTfreqs.c[0]=0.0;
for (int i=0;i<OSCIL_SIZE/2;i++) {
if (max<fabs(basefuncFFTfreqs.c[i])) max=fabs(basefuncFFTfreqs.c[i]);
if (max<fabs(basefuncFFTfreqs.s[i])) max=fabs(basefuncFFTfreqs.s[i]);
};
if (max<0.00000001) max=1.0;
for (int i=0;i<OSCIL_SIZE/2;i++) {
if (basefuncFFTfreqs.c[i]) basefuncFFTfreqs.c[i]/=max;
if (basefuncFFTfreqs.s[i]) basefuncFFTfreqs.s[i]/=max;
};
};
};